DiavolakoS
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
*marouli*
Πολύ δραστήριο μέλος
Και ναι,όπως καταλάβατε,ουδεμια σχέση με τις 2 αυτές επιστήμες εχω!!!2 χρόνια τώρα προσπαθώ να περάσω μια ρημαδοστατιστική στο Πανεπιστήμιο!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DrStrangelove
Περιβόητο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
BadGuy
Εκκολαπτόμενο μέλος
θα ελεγα μαθηματικα.αλλα οχι κατι παραπανω απο επιπεδο 3ης λυκειου.ειμαι καμμενος το ξερω
Συμφωνώ!!!Και εγώ τώρα στο πανεπιστήμιο τα έχω σιχαθεί λίγο!
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ΜΠΕΡΔΕΜΕΝΟΣ
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
fandago
Διακεκριμένο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ΜΠΕΡΔΕΜΕΝΟΣ
Εκκολαπτόμενο μέλος
Μπορείς σε παρακαλώ να μού πείς πώς στο καλό μπορεί ένας υπολογιστής να αποδείξει πως, ισχύει μία ιδιότητα για ΚΑΘΕ φυσικό αριθμό; (Ξέρεις, τους αριθμούς 1, 2, 3, ...). Ποτέ δεν θα επαληθεύσει ΟΛΟΥΣ τους αριθμούς.Οι μαθηματικοί πιστεύουν ότι επειδή χρησιμοποιούμε μαθηματικά παντού, τότε αυτά είναι τα πιο σημαντικά. Η φυσική απο την άλλη είναι πιο ενδιαφέρουσα. Τελικά όμως η πληροφορική είναι πάνω απ'όλα, γιατί πλέον μπορεί να αντικαταστήσει και τους μαθηματικούς και τους φυσικούς.
Υ.Γ. Αυτή είναι μία φράση για να αποστηθίσετε τα πρώτα δεκαδικά ψηφία (από τα άπειρα) του π. Απλά φράψετε πόσα γράμματα έχει η κάθε λέξη (με την σειρά, βεβαίως, βεβαίως!)
Αεί ο θεός ο μέγας γεωμετρεί
το κύκλου μήκος ίνα ορίση διαμέτρω
παρήγαγεν αριθμόν απέραντον
και ον φευ, ουδέποτε όλον θνητοί θα εύρωσι...
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
fandago
Διακεκριμένο μέλος
Όπως μπορεί και ο μαθηματικός... Τι παραπάνω έχει ένας μαθηματικός απο τον υπολογιστή, εκτός απο 4 άκρα;Μπορείς σε παρακαλώ να μού πείς πώς στο καλό μπορεί ένας υπολογιστής να αποδείξει πως, ισχύει μία ιδιότητα για ΚΑΘΕ φυσικό αριθμό; (Ξέρεις, τους αριθμούς 1, 2, 3, ...). Ποτέ δεν θα επαληθεύσει ΟΛΟΥΣ τους αριθμούς.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder
Όπως μπορεί και ο μαθηματικός... Τι παραπάνω έχει ένας μαθηματικός απο τον υπολογιστή, εκτός απο 4 άκρα;
Πες μου οτι κάνεις πλάκα...
Η περιβόητη εικασία του Γκόλντμπαχ έχει επιβεβαιωθεί για πολύ μεγάλους αριθμούς απο υπολογιστή. Αυτό αποτελεί απλώς ένδειξη οτι ισχύει. Ωστόσο με υπολογιστή δεν μπορεί να υπάρξει απόδειξη, μιας και πάντα θα υπάρχει ένας αριθμός μεγαλύτερος απο όσους έχει εξετάσει ο υπολογιστής, για τον οποίο δεν θα έχουμε τσεκάρει αν ισχύει. Πρέπει να βρεθεί μια γενική μέθοδο που να το αποδεικνύει για όλους τους αριθμούς, κάτι που ποτέ δεν θα κάνει ο υπολογιστής.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
parafernalia
Περιβόητο μέλος
Η Φυσική αποδεικνύει με την παρατήρηση και για να μετρήσει, χρησιμοποιεί τα Μαθηματικά. Μέχρι εδώ…
Φυσική vs Μαθηματικά = 1 – 0.
Από τη σχέση αβεβαιότητας του Heisenberg, η Φυσική μπορεί να «δει» μέχρι εκεί που τις επιτρέπει η φύση. Τα Μαθηματικά όμως, συνεχίζουν να την μετρούν σωστά χωρίς να «βλέπουν».
Φυσική vs Μαθηματικά = 1 – 1.
Η Φυσική χτίζει συμπαντικές κοσμοθεωρίες για την κατανόηση του κόσμου που μας περιβάλλει. Γοητευτικό δεν είναι; Άντε…
Φυσική vs Μαθηματικά = 2 – 1.
Τα Μαθηματικά τροφοδοτούν τις επιστήμες με ιδέες και μοντέλα που απορρέουν αφαιρετικά από τους αριθμούς. Μερικά παραδείγματα: α) Η πιθανοθεωρία. Τροφοδότησε την Κβαντομηχανική. β) Τα Δυναμικά συστήματα και επιστήμη του Χάους. Ξεκίνησε και συνεχίζει πάνω στη μελέτη μιγαδικών εξισώσεων. Τροφοδότησε την θεωρία Υπερχορδών. γ) Οι μη συνήθεις, υπερβατικές διαφορικές εξισώσεις. Χρησιμοποιούνται για την περιγραφή μοντέλων του ανθρώπινου εγκεφάλου.
Φυσική vs Μαθηματικά = 2 – 2.
Να βάλουμε και την Πληροφορική στο παιχνίδι; Δεν θα υπήρχε χωρίς τον Άραβα Μαθηματικό εν ονόματι «Αλγόριθμο», το δυαδικό σύστημα αρίθμησης, και την ανακάλυψη του τρανσίστορ (πύλη διόδου ηλεκτρικού ρεύματος : 0 = δεν περνάει, 1 = περνάει).
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
fandago
Διακεκριμένο μέλος
Ε καλά, οτιδήποτε μπορούμε να πούμε ότι δεν θα υπήρχε χωρίς να έχει γίνει κάτι, αλλά απο τη στιγμή που έγινε, το θεωρούμε δεδομένο.Να βάλουμε και την Πληροφορική στο παιχνίδι; Δεν θα υπήρχε χωρίς τον Άραβα Μαθηματικό εν ονόματι «Αλγόριθμο», το δυαδικό σύστημα αρίθμησης, και την ανακάλυψη του τρανσίστορ (πύλη διόδου ηλεκτρικού ρεύματος : 0 = δεν περνάει, 1 = περνάει).
Μέσα στην πλάκα που κάνω γιατί μ'αρέσει να πικάρω μαθηματικούς, είναι και μια δόση αλήθειας που λέει, ότι ό,τι και να κάνει ένας μαθηματικός/φυσικός κάποια στιγμή ο υπολογιστής θα τον ξεπεράσει. Και αυτό έχει αρχίσει ήδη να γίνεται. Τι άλλο μπορεί να αποδείξει ένας μαθηματικός χωρίς την χρήση υπολογιστών πλέον; Και ποιός είπε ότι δεν μπορεί ο υπολογιστής να χρησιμοποιήσει ή να ανακαλύψει μεθόδους για αυτά που λες; Μπορεί όλα αυτά να φαντάζουν εικόνες απο matrix, αλλά πίστεψε με, δεν είναι καθόλου μακρυά.
Πες μου οτι κάνεις πλάκα...
[...]Πρέπει να βρεθεί μια γενική μέθοδο που να το αποδεικνύει για όλους τους αριθμούς, κάτι που ποτέ δεν θα κάνει ο υπολογιστής.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ΜΠΕΡΔΕΜΕΝΟΣ
Εκκολαπτόμενο μέλος
Ε καλά, οτιδήποτε μπορούμε να πούμε ότι δεν θα υπήρχε χωρίς να έχει γίνει κάτι, αλλά απο τη στιγμή που έγινε, το θεωρούμε δεδομένο.
Μέσα στην πλάκα που κάνω γιατί μ'αρέσει να πικάρω μαθηματικούς, είναι και μια δόση αλήθειας που λέει, ότι ό,τι και να κάνει ένας μαθηματικός/φυσικός κάποια στιγμή ο υπολογιστής θα τον ξεπεράσει. Και αυτό έχει αρχίσει ήδη να γίνεται. Τι άλλο μπορεί να αποδείξει ένας μαθηματικός χωρίς την χρήση υπολογιστών πλέον; Και ποιός είπε ότι δεν μπορεί ο υπολογιστής να χρησιμοποιήσει ή να ανακαλύψει μεθόδους για αυτά που λες; Μπορεί όλα αυτά να φαντάζουν εικόνες απο matrix, αλλά πίστεψε με, δεν είναι καθόλου μακρυά.
Θα συμφωνήσω κι εγώ πως, κατά τη γνώη μου, ο PARAFERNALIA έχει υπεραπλουστεύσει κάπως τα πράγματα. Σόρυ φίλε, κι εγώ μαθηματικός είμαι...
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Οι φυσικοί εργάζονται διαφορετικά: Ενεργούν μάλλον όπως ένας γλύπτης που φτάχνει στην αρχή ένα γενικό πρόπλασμα του έργου του, πριν το ξαναδουλέψει, εδώ ή εκεί, συχνά χωρίς συγκεκριμένη σειρά και ανάλογα με την έμνευση της στιγμής. Ο επισκέπτης θα δει, στο εργαστήριο, το γλυπτό να προχωρά, αν παίρνει μορφή, να αλλάζει στο συνολό του. Δεν θα δει όμως ποτέ το γλύπτη να τλειώνει μαι λεπτομέρεια πριν πιάσει το υπόλοιπο. Έτσι είναι η φυσική: Ο φυσικός δεν ξέρει να προσδιορίσει ακριβώς τις έννοιες που χρησιμοποιεί (δύναμη, μάζα, ενέργεια και ούτω καθεξής). Στηρίζονται οι μεν στις δε και φωτίζονται αμοιβαία, προοδευτικά, αλλά με όλες αυτές τις έννοιες, που δεν αποκτούν νόημα παρά σιγά σιγά μέσα από τις αμοιβαίες σχέσεις τους, οικοδομείται μια ορισμένη αναπαράσταση, ένα ορισμένο πρόπλασμα του κόσμου".
Τα μήλα του Newton, Jean-Marie Vigoureux, Εκδόσεις Κέδρος
Με βάση τα παραπάνω πιστεύω οτι δεν έχει νόημα η αρχική ερώτηση.
Υ.Γ: Αν μπορείτε ικανοποείστε την περιέργια μου, την ερώτηση την έθεσε μαθηματικός;
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
iJohnnyCash
e-steki.gr Founder
Μαθητής την έθεσεΥ.Γ: Αν μπορείτε ικανοποείστε την περιέργια μου, την ερώτηση την έθεσε μαθηματικός;
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dare-Devil
Πολύ δραστήριο μέλος
Υπάρχουν πολλά επειχηρήματα που ακούω, μερικά είναι:
Η φυσική δεν θα ήταν τίποτα χωρίς τα μαθηματικά
Η δικιά σας γνώμη;
H αλήθεια είναι οτι η φυσική βασίζεται στα μαθηματικά και η φυσική είναι η βάση της χημείας.
Εγώ αγαπώ την φυσική γιατί απλά είναι η εφαρμογή των μαθηματικών για να αποδείξεις κάτι το οποίο δεν ''απέχει'' μίλια μακριά από τη καθημερινότητα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
(Κατά την άποψη μας, τα μαθηματικά δεν είναι επιστήμη, με την έννοια ότι δεν είναι φυσική επιστήμη. Ο έλεγχος της εγκυρότητας τους δεν γίνεται μέσο του πειράματος).
Παρεμπιπτόντως να ξεκαθαρίσουμε πως αν κάτι δεν είναι επιστήμη δεν είναι απαραιτήτως κακό. Λογουχάρη, η αγάπη δεν είναι επιστήμη. Έτσι, αν λέμε πως κάτι δεν θεωρείται επιστήμη, δεν σημαίνει πως το υποτιμάμε απλώς σημαίνει πως δεν είναι επιστήμη.
Τα βασικά χαρακτηριστικά των Φυσικών επιστημών είναι:
α) Την ταπεινοφροσύνη της αναγνώρισης του πόσο εύκολο είναι να κάνεις λάθος.
β) Τα διαδοχικά κόσκινα του πειραματικού ελέγχου, τα οποία μας επιτρέπουν να ξεχωρίσουμε από την πληθώρα των ιδεών εκείνες τις ε λ ά χ ι σ τ ε ς, που πράγματι προωθούν την κατανόηση του κόσμου μας.
Τα παραπάνω αποτελούν ένα απάνθισμα από ιδέες του Feynman( Nobel Φυσικής, 1918-1988), των φυσικών R. Serway και Λ.Οικονόμου.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ΜΠΕΡΔΕΜΕΝΟΣ
Εκκολαπτόμενο μέλος
Υ.Γ. Θα φανεί λίγο αστείο, αλλά ενώ οι μαθηματικοι είναι οι μόνοι από τους θετικούς επιστήμονες οι οποίοι δεν χρειάζεται να φορέσουν άσπρες μπλούζες κατά την εργασία τους, είναι και οι μόνοι που θα φορέσουν άσπρες μπλούζες "εξαιτίας της εργασίας τους". Με πιάνετε, έτσι;
Υ.Γ.2: Η φυσική ασχολείται με την ομορφιά τής φύσης. Τα μαθηματικά ασχολούνται με τη φύση τής ομορφιάς...
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Τα μήλα του Newton.
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Νωεύς
Τιμώμενο Μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 17 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 5 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.